O.P.Code: 20HS0836

(i) $(2x-3)^3$ (ii) $\frac{x^4}{1-x}$.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

MCA I Year I Semester Regular & Supplementary Examinations January/ February-2025

MCA I Year I Semester Regular & Supplementary Examinations January/ February-2025 DISCRETE MATHEMATICS					
Tim	ıe:	3 Hours	Max.	Marks	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Define converse, inverse contra positive with an example.	CO1	L3	6M
	b	Prove that $(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ is a contradiction.	CO ₁	L3	6 M
		OR			
2	a	Show that $S \vee R$ is a tautologically implied by	CO ₁	L4	6M
		$(P \lor Q) \land (P \to R) \land (Q \to S)$			
	b	Show that $P \to Q, P \to R, Q \to \neg R, P$ are inconsistent.	CO1	L4	6M
		UNIT-II			
3	a	Define an equivalence relation. If R be a relation in the set of integers Z	CO2	L1	6M
		defined by $R = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}, (x - y) \text{ is divisible by } 6\}$. Then prove			01.1
		that R is an equivalence relation.			
	b	Draw the Hasse diagram representing the positive divisors of 36.	CO ₂	L1	6M
		OR			
4	a	Show that $G=\{1,2,3,4,5\}$ is not a group under addition & multiplication	CO ₂	L2	6M
		modulo 6.			
	b	Let f and g be functions from R to R defined by	CO ₂	L1	6 M
		$f(x) = ax + b \text{ and } g(x) = 1 - x + x^{2}.$			
		If $(g \circ f)(x) = 9x^2 - 9x + 3$, determine a, b.			
		UNIT-III			
5	a	A group of 8 scientists is composed of 5 psychologists and 3	CO ₃	L1	6M
		sociologists.			
		i) In how many ways can a committee of 5 be formed? ii) In how many			
		ways can a committee of 5 be formed that has 3 psychologists and 2			
	L	sociologists? The question paper of mothematics contains to a questions divided into	CO2	T 1	CM
	U	The question paper of mathematics contains two questions divided into two groups of 5 questions each. In how many ways can an examine	COS	L1	6M
		answer six questions taking atleast two questions from each group.			
		OR			
6	a	Find the number of positive integers less than or equal to 2076 and	CO3	L1	6M
		divisible by 3or 4.			
	b	Applying pigeon hole principle show that of any 14 integers are selected	CO ₃	L4	6M
		from the set $S = \{1, 2, 3 25\}$ there are at least two whose sum is 26.			
		Also write a statement that generalizes this result.			
		UNIT-IV			
7	a	Find the sequence generated by the following generating functions	CO4	L1	6 M

- b Determine the sequence generated by
 - (ii) $\frac{1}{1-x} + 2x^3$.
 - OR
- 8 a Show that $\{a_n\}$ is a solution of recurrence relation

CO4 L6 6M

 $a_n = -3a_{n-1} + 4a_{n-2}$, if $a_n = 1$.

(i) $f(x) = 2e^x + 3x^2$

CO4

CO₄

- **b** Solve $a_n = a_{n-1} + 2a_{n-2}$ with initial conditions $a_0 = 2$, $a_1 = 7$
- CO4 L6 6M

- UNIT-V
- 9 a Show that the maximum number of edges in a simple graph with n CO5 L4 6M vertices is $\frac{n(n-1)}{2}$.
 - **b** How many vertices will the graph contains 6 edges and all vertices of CO5 L5 6M degree 3.

OR

- 10 a Show that the two graphs shown in figure are isomorphic.
- CO5 L1 6M

b Define Euler circuit, Hamilton cycle, Wheel graph.

CO5 L2 6M

*** END ***